Tubularity Flow Field - A Technique for Automatic Neuron Segmentation
نویسندگان
چکیده
A segmentation framework is proposed to trace neurons from confocal microscopy images. With an increasing demand for high throughput neuronal image analysis, we propose an automated scheme to perform segmentation in a variational framework. Our segmentation technique, called tubularity flow field (TuFF) performs directional regional growing guided by the direction of tubularity of the neurites. We further address the problem of sporadic signal variation in confocal microscopy by designing a local attraction force field, which is able to bridge the gaps between local neurite fragments, even in the case of complete signal loss. Segmentation is performed in an integrated fashion by incorporating the directional region growing and the attraction force-based motion in a single framework using level sets. This segmentation is accomplished without manual seed point selection; it is automated. The performance of TuFF is demonstrated over a set of 2D and 3D confocal microscopy images where we report an improvement of >75% in terms of mean absolute error over three extensively used neuron segmentation algorithms. Two novel features of the variational solution, the evolution force and the attraction force, hold promise as contributions that can be employed in a number of image analysis applications.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملA Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images
Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2015